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Processing of liquid-solids slurries for waste-
water treatment involves handling of dissolved 
solids and undissolved solids with readily 

suspended to rapidly settling behaviors. Given 
a significant loading of dissolved or readily 
suspended solids, the effective carrier-fluid 

rheology may exhibit complicated non-
Newtonian effects. A simulation-based 

assessment of wastewater treatment requires 
a 

sophisticated computational fluid dynamics 
(CFD) flow code with submodels sufficient to 
address this potentially diverse range of 
physics. Reynolds-Averaged Navier-Stokes 
(RANS) models are the current workhorse. 

Simulation is always limited by available compu-
tational resources and physics parameteriza-
tions. With advances in computational 
engineering in parallel processing environments 
and physics submodel development for 
computer simulation codes, many limitations are 
either being removed or are being moved to 

Figure 1. Multiphase mixing in an industrial process vessel: Flow (left), Velocities (Right) 

higher-order details. CFD-RANS models are 
now able to meet challenges for simulating 
liquid-solids slurry flows in complicated 
configurations. 

Industrial wastewater may contain a significant 
fraction of undissolved solids with potentially 
broad particle size and density distributions. 
Granular-Eulerian multiphase modeling is an 
example of a CFD-RANS technology that has 
been formulated to handle this kind of appli-
cation. In a Granular-Eulerian multiphase model, 
each gas, liquid, or solids constituent is treated 

Figure 2. Flow of a Herschel Bulkley Fluid in a Pipe: Flow (left), Velocities (Right) 
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as a separate continuous modeling phase. 
Submodels are used to parameterize interac-
tions and behaviors at boundaries. 

Comparisons of computational results (from a 
commercial CFD code CD-adapco/Star-CCM+) 
to experimental data show the fidelity that can 
be achieved. Figure 1 (left) is an instant from a 
simulation of mixing of a polydisperse loading 
of undissolved solids in a Newtonian carrier 
fluid. The mixing is performed in a vessel prior 
to the next step of the treatment process. The 
total solids loading in the vessel is 10% by 
weight. Approximately half of the solids are 
readily suspended. The upper part of the vessel 
is gas. The particle distribution is characterized 
by 6 solids phases with representative particle 
sizes and densities. The simulation presented in 
this article models an existing physical model 
experiment of the mixing of the waste in the 
vessel. The simulation geometry is derived from 
a CAD model of the experimental apparatus. In 
both the simulation and the experiment, time 
histories of velocity are sampled at six points in 
the bulk flow with the velocity sampling 
locations at lower, mid, and upper levels. Three 
locations provide velocities near the vessel 
centerline. Three locations provide velocities 
near the vessel outer wall. Comparisons of the 
CFD-RANS predicted velocities to the experi-
mental data, Figure 1 (right), confirm model 
fidelity to real-world physics. 

Dissolved and undissolved readily-suspended 
solids in industrial mixing vessels and other 
liquid-solids slurries may be modeled using an 
effective fluid rheology and density. 
Contemporary CFD solvers include a broad 
range of rheology submodels, a non-Newtonian 
Herschel-Bulkley fluid being an example. 

In a Herschel-Bulkley fluid, the apparent 
viscosity of the fluid depends on the local shear 
rate. In regions of high local shear rates, a 
Herschel-Bulkley fluid behaves like a Newtonian 
fluid. As local shear rates reduce, a Herschel-
Bulkley fluid becomes more viscous. The local 
shear rate in a turbulent flow occurs in the dissi-
pation range of turbulence. CFD-RANS 
solutions provide energy-containing-range 
(mean-field) statistics, not dissipation range 
statistics. Without an appropriate model linking 
local shear rates to mean-field statistics, CFD 
simulations of Herschel-Bulkley fluids are well 
defined only for laminar flows where the dissi-
pation range can be resolved explicitly. 
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A method to extend CFD modeling of Herschel-
Bulkley fluids into the turbulence regime was 
recently presented at the Star-CCM+ Global 
Conference (Peltier et al, 2016). This model 
extension uses turbulence theory to estimate 
representative local maximum shear rate 
magnitudes from CFD-RANS data enabling 
simulations of Herschel-Bulkley fluids in the 
turbulence regime. 

Figure 2 (left) shows CFD predicted viscosities 
for flow in a pipe of a Herschel-Bulkley fluid in 
the laminar, transitional, and turbulence 
regimes. The slice shown is from the pipe 
centerline to the upper outer wall. Comparisons 

of the CFD predicted velocities to experimental 
data, Figure 2 (right), confirm model fidelity to 
real-world physics. 

The examples shown for simulation of liquid-
solids slurries underscore that capabilities of 
contemporary commercial CFD flow codes are 
rapidly advancing and support a conclusion 
that a simulation-based assessment of waste-
water treatment is possible with an expectation 
for fidelity to real-world physics. n 
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