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Synopsis: The analysis and design of foundations under dynamic loads due machinery is routinely conducted in 
industrial projects. Determination of the dynamic impedance of the foundation is required for performing such 
analysis and design. Different tools are available for the calculation of foundation impedances including: published 
closed form solutions, charts, tables and specialized computer codes. Despite the convenience of these tools, their 
use for production work is cumbersome. The main reason being that, in its simplest form, a dynamic impedance is 
provided as a frequency dependent complex function or as a spring-dashpot system, with the spring becoming 
negative for certain frequencies; which cannot be directly implemented in standard structural analysis codes. The 
use of such impedances requires a clear understanding of the theory behind their calculation along with several 
principles of soil dynamic, which are not covered in the regular curriculum of structural engineering programs. This 
paper aims to fill this gap by providing structural engineers with the basic tools for the understanding, calculation 
and use of foundation impedance functions. For this purpose, numerical examples are provided to illustrate the 
application of the approaches discussed in this paper for the calculation and application of dynamic impedances. 
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1. INTRODUCTION 
The analysis and design of foundations under dynamic loads due to rotating machinery is routinely 

conducted in industrial projects. Determination of the dynamic behavior of the soil-foundation system is required for 
performing such analysis and design. A key aspect of this process involves modeling the soil behavior under 
excitation introduced by the rotating equipment. In current industry practice, the soil response is modeled using the 
dynamic stiffness/impedance concept. In general, for rigid surface foundations the dynamic impedance is given by 
six frequency dependent springs and dampers. For flexible or embedded foundations the dynamic impedance is 
given by a complex frequency dependent matrix.  

Different tools are available for the calculation of the dynamic impedances including closed form solutions, 
charts, tables and specialized computer codes. Despite the usefulness of these tools, their application for production 
work is sometimes cumbersome when using standard structural analysis codes since the dynamic impedance is 
provided as a complex number, complex matrix or in form of a spring and damper, with the spring becoming 
negative for certain frequencies. The use of such impedances requires a clear understanding of the theory behind 
their calculation and the principles behind modeling of the dynamic response of soil, both of which are not included 
in the regular curriculum of structural engineering programs. Therefore, the purpose of this paper is to provide 
structural engineers with basic tools for the understanding, calculation and use of impedance functions using 
standard finite element codes.  

In particular, the definition of the dynamic impedance is presented and its application is illustrated using 
simple foundation models. Several procedures are discussed to model the unbounded soil media using finite 
elements (FE). It must be noted that in a FE model only a fraction of the soil can be discretized; therefore, 
appropriate boundary conditions (non-reflective boundaries) must be applied where the soil is arbitrarily truncated. 
Recommendations are provided to select the element size, element type, to obtain the dynamic impedance of surface 
foundations. Finally, numerical examples are included to illustrate the application of the approaches discussed in this 
paper for the calculation of dynamic impedances of surface foundations. 

  



2. DYNAMIC IMPEDANCE DEFINITION  
The response of a rigid foundation to static or dynamic load arises solely from the deformation of the 

supporting soil. The static soil stiffness (K = P/U) is used to model the soil-foundation response to static load. In an 
analogous manner, the dynamic soil impedance/stiffness (K = P(t)/U(t)) is used to model the soil-foundation 
response to dynamic loads (e.g. due to machinery operation). In particular, six dynamic impedances are required, 
three translational and three rotational, to formulate the dynamic equilibrium equation of a rigid foundation, as 
shown in Figure 1. These impedances are a function of the foundation geometry, the soil properties and vibration 
frequency of the machine (fm, ωm). 
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Figure 1—Degrees of freedom for rigid foundation block resting on a layered half-space. 

 The procedure used to calculate the dynamic impedances of a rigid surface foundation can be summarized in 
the following steps:  

1. The foundation is modeled as massless and infinitely rigid; therefore, only the geometry of the area in contact 
with the soil is required (e.g., B and L shown in Figure 1). The use of a massless foundation is important since 
it avoids the need for recalculating the dynamic impedance every time that the foundation mass changes, which 
often happens during the design process.     

2. A harmonic force or moment of frequency ω and of unit magnitude is applied to the rigid foundation (e.g., 
𝑃 𝑡 = 𝑃!𝑒!"#  𝑜𝑟  𝑀 𝑡 = 𝑀!𝑒!"#), as shown in Figure 2. Such force/moment generates stress waves that 
propagate into the underlying soil, which is modeled as a viscoelastic material. Therefore, the following 
properties are required for each soil layer: thickness (h), Modulus of elasticity (Es), Poisson’s ratio (ν), density 
(ρ), and material damping (ζ). 

3. The steady state vibration amplitude (𝑈 𝑡 = 𝑈!𝑒!"#!!"  𝑜𝑟  θ 𝑡 = 𝜃!𝑒!"#!!") of the foundation under the 
harmonic force is obtained by keeping track of the reflections and refractions that take place every time that the 
stress waves reach a soil layer boundary. This is achieved by finding the different wave paths shown in Figure 
2.  

4. The dynamic impedance K(ω) is defined as the ratio between the harmonic force acting on the foundation and 
its vibration amplitude as shown in Eq. (1). It must be noted that this is a frequency dependent complex 
quantity.  

𝐾 𝜔 =
𝑃(𝑡)
𝑈(𝑡)

=
𝑃!𝑒!"#

𝑈!𝑒!!"!!"
=
𝑃!
𝑈!
𝑒!!" (1) 



5. In soil dynamics, it is customary to express the complex dynamic impedance as shown in Eq. (2). In addition, 
the real and imaginary parts of the dynamic impedance are associated, by analogy, with a dynamic (frequency 
dependent) spring and dashpot as shown in Eq. (3). 

𝐾 𝜔 = 𝑘 + 𝑖𝜔𝐶	   (2) 

𝑘 𝜔 = 𝑅𝑒 𝐾 𝜔 =
𝑃!
𝑈!
cos𝜙	  

𝐶 𝜔 =
𝐼𝑚 𝐾 𝜔

𝜔
= −

𝑃0
𝜔𝑈0

sin𝜙 

(3) 

6. Steps 2 to 5 are repeated for each frequency ωi of interest, until the range of vibration frequencies of the 
machine is covered.  

 The above approach can also be used for calculating the dynamic impedance of a single pile or pile foundation. 
However, in this case, the mass and flexibility of each pile are considered. Similarly, the concept of dynamic impedance 
can be extended to flexible foundations; however, in this case, a dynamic impedance matrix is required. Details 
regarding the generalization of the dynamic impedance concept can be found elsewhere, e.g. Refs. [5], [7] and [8].  
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Figure 2—Downwards and upwards wave propagation for surface disk in layered half-space, according to Ref [6]. 

 

3. CALCULATION OF THE SOIL DYNAMIC IMPEDANCE/STIFFNESS 
 There are several approaches for calculating the frequency dependent dynamic impedance of a soil supported 
foundation; these include: (a) Published closed form solutions, tables and charts (Refs. [1], [2] and [3]); (b) Simplified 
methods also known as strength of material approaches (Refs. [5] and [6]); and (c) Computer-based numerical analysis 
methods such as the boundary element method, finite element method, Green’s functions and integral equations among 
others (Ref. [7], [8], [9] and [12]). 

 A detailed discussion of above procedures is beyond the scope of this paper. However, it must be noted that 
closed-form solutions are limited in scope since they just apply to foundations resting on homogeneous or simplified soil 



profiles. Given that typical machine foundations are supported on layered soil profiles, computer based analyses are 
required for the calculation of the dynamic impedance of the subject foundations. Therefore, the rest of this section is 
devoted to discussing the procedures used for the calculation of foundation impedances using the finite element method. 
The purpose is to provide the background required for understanding the calculation of foundation impedances. 
However, it is expected that impedance calculations for production work will be conducted using computer codes 
specially designed for that purpose, e.g., Ref. [13]. 

Finite Element Calculation of Dynamic Foundation Impedances 
For complex foundation geometries or soil conditions, the dynamic soil impedance can be determined by 

dynamic analysis of a three-dimensional or two-dimensional continuum model of the soil-foundation system. In 
particular, the six steps detailed in Section 2 can be implemented using the finite element (FE) method. In this case, 
the soil is modeled as an elastic or viscoelastic material, which can be considered isotropic, anisotropic, 
homogeneous or nonhomogeneous.   

The general approach presented in this section consists of modeling the soil with axisymmetric or 3D solid 
elements. When possible, axisymmetric elements should be used since they greatly reduce the modeling and analysis 
time compared to that of an equivalent model using 3D-solid elements. 

Non-reflective Boundaries—In a FE model, only a portion of the soil (i.e., a soil island) can be 
discretized; therefore, appropriate boundary conditions (non-reflective boundaries) must be applied where the soil is 
arbitrarily truncated. While effective, quiet, non-reflecting or transmitting boundaries have been developed in the 
literature for this purpose, they have not yet been implemented in most computer codes used for structural analysis. 
This section discusses some of the boundaries that can be easily implemented in such codes. Such boundaries are 
approximate in nature; nevertheless, FE models based on them converge to the theoretical elastodynamics solution 
as the soil island size is increased. In general, results within 5% of theoretical solutions can be achieved with very 
reasonable (i.e., small) soil island sizes. Specific details regarding the many different boundary types proposed in 
the literature can be found in Refs. [5], [9] and [10]).  

Gradual Damping Boundary Elements—this method uses conventional finite elements to model an 
unbounded domain. In particular, the infinite domain is approximated by attaching artificially damped elements 
outside the area of interest in the analysis. The structural damping of the attached elements is gradually increased in 
order to model the dispersion of the propagating waves in the unbounded media. For instance, in the axisymmetric 
model shown in Figure 3, the unbounded media is arbitrarily truncated and divided in internal, transition and 
gradually damped regions. 

 

Figure 3—Use of gradual damping to model a layered unbounded media. 

The damping of the elements in the damped region is gradually increased from the innermost set to the set 
next to the finite boundary. In particular, the gradual increase proposed in Ref [12] and given by Eq. (4) is 
recommended here; where, α0 is the damping ratio for the first damped element, ζ is a constant factor larger than 
one which controls the gradual damping growth, and k = 0, 1, 2,..., n-1 with 0 corresponding to the innermost set of 
damped elements, and n-1 to the last, as shown in Figure 3. In a computer code capable of conducting frequency 
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domain analyses, this exponential increase of damping can be easily included using the complex modulus of 
elasticity given by Eq. (5).  

 𝜉 = 𝛼!𝜁!  (4) 

𝐸! = 𝐸(1+ 𝑖2𝛼!𝜁!) (5) 

The exponential function defined by Eq. (4) ensures a gradual rate of increase in damping. This prevents a 
sudden damping increase that by itself could cause reflection of the propagating waves. The following criteria 
should be followed (Ref [12]) for achieving an optimum damping increase: 

• Sufficient damping such that the effect of the boundary is negligible. 
• Damping is gradual enough such that there is no reflection caused by a sudden damped condition. 

Spring-dashpot boundaries—Simple boundaries approximating the half-space can be specified in the form 
of frequency independent springs and dashpots (Ref. [9]). The springs are meant to model the elastic response of the 
surrounding media while the dashpots are intended to account for the radiation of waves propagating towards 
infinite. Due to the local nature of these boundaries, their energy absorption capabilities depend not only on material 
properties but also on the frequency content of the excitation. These spring-dashpot elements are attached to the 
boundary nodes of the soil island. The procedures used to define the spring-dashpot properties for rectangular soil 
islands are described next; additional details are provided in Ref. [9].  

The dashpot coefficients are determined in terms of the material properties of each soil layer per Ref [11]. 
In particular, the normal (Cn = ρVp) and tangential (Ct = ρVs) dashpot coefficients are a function of the density (ρ), 
the compressional wave velocity (Vp) and the shear wave velocity (Vs) of the soil layer. The springs are determined 
in terms of the material properties and geometry of the soil island (Ref. [9]). For a rectangular soil island, the spring 

constants are calculated per Eqs. (6) to (8); where, 𝑅 = 𝑥2+ 𝑦2+ 𝑧2, G is the shear modulus, and ν is Poisson’s 
ratio. 
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The simple boundaries described in this section can be equally applied in frequency and time domain 
analyses (linear and nonlinear). Furthermore, they can be combined with the gradual damping elements described in 
the previous section. 

Modeling Considerations—the running time and accuracy of a finite element solution are greatly affected 
by the mesh quality, in other words by the element type, size, shape, and aspect ratio used during the modeling 
stage. General FE computer codes (e.g., Ref. [4]) offer extensive element libraries and a full array of modeling 
techniques that help to produce state of the art finite element models. For a detailed description of such techniques 
the reader is referred to the Theory, Modeling and User’s manual of the FE code selected for the application. The 
present discussion is limited to the use of linear elastic axisymmetric and 3D solid finite elements to model the soil 
in the frequency domain, as illustrated in Section 4.  

Element Size— several recommendations are provided in the literature in order to set the element size for 
wave propagation analyses using finite elements. The general concept is that the mesh should be fine enough to 



resolve the propagating wave. Overall, recommendations provided in the literature range between 5 and 20 elements 
per wavelength (λ = 2πVs/ω). Of course, better results should be expected from highly refined models; nevertheless, 
they are computationally expensive and may be impractical from an engineering point of view. Therefore, a 
compromise must be reached among discretization quality and solution efficiency. In this study, it is recommended 
to start with a coarse mesh, about five elements per wavelength (Esize ~ λ/5) along the direction of the wave and 
investigate the effect of element size on the solution quality using an axisymmetric model of the foundation under 
study.  

Soil Island Size—the size of the portion of soil modeled affects the accuracy achieved when calculating the 
dynamic impedance of a foundation. In Figure 4, a typical soil island is presented for illustration purposes. Gradual 
damping is used to model the attenuation of stress waves as discussed in the section dealing with non-reflective 
boundaries. 

In order to define the size of the soil island, it is recommended to use a transition region (LT) at least equal 
to the foundation radius (LT> rf) and a transition region (LH) at least equal to four times foundation radius (LH> 4rf). 
Alternatively, the total depth (H) can be adjusted as a function of the maximum Rayleigh wave length 
(λR~2πVs/ωmin); it is recommended to use H>2λR since Rayleigh waves almost vanish at this depth. 

 

Figure 4—Axisymmetric finite element model of a surface foundation. 

 

4. APPLICATION EXAMPLES 
The purpose of this section is to illustrate the steps required for calculating the dynamic impedance of 

surface foundations, using the finite element method, along with their application for calculating the dynamic 
response of a typical machine foundation. 
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Dynamic Impedance of Rigid Disk on Layered Soil Profile 
Figure 5 shows the soil properties and foundation geometry used in this example. The soil profile has a 

rigid soil layer near the surface (fixed base), which results in total reflection of the vertical waves produced by the 
vibration of the foundation. Such reflections along with the layered soil profile result in a complex dynamic 
response, which requires solution using numerical methods as discussed here. 

 
 

 

 
Figure 5—Soil profile and axisymmetric finite element model of the surface foundation. 

The finite element model of the foundation is shown in Figure 5. Axisymmetric elements are used to model 
the soil and foundation. The radiation of stress waves in the horizontal direction is modeled using gradual damping 
elements, as discussed in Section 3. The dynamic impedances are calculated per the steps outlined in Section 2; thus, 
the foundation is modeled as rigid and the mass is set to zero. Calculated impedances for vertical, horizontal and 
rocking vibration are shown in Figures 6 to 8. As can be seen, the real part of the vertical impedance becomes 
negative for frequencies in the ranges from 13 to 20Hz and 85 to 95Hz. As mentioned in Section 2, the real and 
imaginary parts of the dynamic impedance are customarily associated with a frequency dependent spring and 
dashpot, as shown in Eq. (2) and (3). However, modeling a negative spring is cumbersome in typical structural analysis 
programs. In this case, the concept of added mass can be used, as illustrated in the following section.  

 

 

Figure 6—Real and Imaginary parts of the dynamic impedance for vertical vibration. 
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Figure 7—Real and Imaginary parts of the dynamic impedance for horizontal vibration.  

 

 

Figure 8—Real and Imaginary parts of the dynamic impedance for rocking vibration.  

Block Foundation under Vertical Load 
This example illustrates the use of the dynamic impedance and added mass concepts for calculating the 

response of a machine foundation when the real part (spring coefficient) of the dynamic impedance becomes 
negative. For this purpose, the foundation from the previous example is analyzed here under vertical vibration. The 
foundation under consideration has a radius of 1 m (3.28 ft) and its thickness is 0.5 m (1.64 ft), which results in a 
foundation mass (m) of 3770 kg (8311 lb). The operating speed of the machine (fm) is 30Hz, the rotating mass mr = 
500 kg (1102 lb), and the mass eccentricity er = 1.727E-4 m (5.67E-4 ft); which results in a frequency (f) dependent 
unbalanced load  𝐹! 𝑡 = (𝑓/𝑓!)𝐹!𝑒!"# , where F0 = 3.07 kN (0.69 kip). 

The generic foundation shown in Figure 9 (Ref. [1]) is used to illustrate the degrees of freedom considered 
while deriving the equation of motion. It must be noticed that the eccentricity between the CG and center of soil 
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resistance (CR) is zero. Furthermore, the foundation is under a vertical harmonic force Fz(t) acting along the CG, 
therefore the only displacement experienced by the foundation is uz(t).  
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Figure 9—Analysis of the dynamic equilibrium of a vertically vibrating foundation block per Ref. [1]. 

A detailed derivation of the equation of motion for the foundation depicted in Figure 9 can be found 
elsewhere, e.g. Ref. [1]. In summary, the dynamic equilibrium equation of the block foundation is: 

𝑃! 𝑡 +𝑚𝑢! 𝑡 = 𝐹!(𝑡) (9) 
The soil resistance, acting at the CR, is provided by Pz(t) = Kzuz(t); where Kz is the vertical dynamic 

impedance, which can be modeled as a frequency dependent spring and dashpot per Eq. (2), i.e.,   
𝐾! 𝜔 = 𝑘! 𝜔 + 𝑖𝜔𝐶! 𝜔 . Therefore the equation of motion can be rewritten as follows: 

𝐾! 𝜔 𝑢! 𝑡 +𝑚𝑢! 𝑡 = 𝐹!(𝑡) 
(𝑘𝑧 𝜔 + 𝑖𝜔𝐶𝑧 𝜔 )𝑢! 𝑡 +𝑚𝑢! 𝑡 = 𝐹!(𝑡) 

(10) 

For harmonic loading (i.e., 𝐹! 𝑡 = 𝐹!𝑒!"#), due to a rotating machine, the solution of above 
equation is given as shown below, where uz(ω) is a complex function. 

𝑢! 𝜔 =
𝐹!

𝐾! 𝜔 − 𝜔!𝑚 =
𝐹!

𝑘𝑧 𝜔 + 𝑖𝜔𝐶𝑧 𝜔 − 𝜔!𝑚 (11) 

As mentioned before, the dynamic spring 𝑘! 𝜔  shown in Figure 6 becomes negative for frequencies in the 
range from 13 to 20Hz and 85 to 95Hz. In this case, the machine vibration can be calculated directly using Eq. (11). 
However, if a standard structural analysis program is used, only static spring coefficients are permitted and negative 
dynamic springs are not allowed. In this situation, the dynamic spring can be replaced by a spring mass system. 
Therefore, for 𝑘! 𝜔 < 0,  𝑘! 𝜔 = 𝑘′! −𝜔2𝑚′𝑠 𝜔 ; where k’z is the static stiffness of the foundation, 𝑘′! = 𝑘! 0 , 
and the frequency dependent mass m’s is calculated as follows:  

𝑚′! 𝜔 = (𝑘′𝑧 − 𝑘𝑧 𝜔 )/𝜔! (12) 



Figure 10 shows the variation of the frequency dependent spring and mass coefficients used to model the 
vertical stiffness depicted in Figure 6. As can be seen the static stiffness is used where 𝑘! 𝜔 < 0, and the added 
mass is calculated per Eq. (12). Figure 11 shows the vibration amplitude of the subject foundation as calculated per Eq. 
(11) using negative spring coefficients or the concept of added mass. As expected the same response is predicted. 

 

Figure 10—Spring and added mass coefficients for vertical vibration.  

 

Figure 11—Coast up and coast down response of the rigid block foundation 

Block Foundation under Coupled Horizontal and Rocking Vibration 
This example illustrates the use of dynamic impedance concept for calculating the response of a machine 

foundation under coupled horizontal and rocking vibrations. For this purpose, the foundation from the previous 
example is analyzed under horizontal vibration. The foundation under consideration has a radius of 1 m (3.28 ft) and 
its thickness is 0.5 m (1.64 ft), which results in a foundation mass (m) of 3770 kg (8311 lb) and a mass moment of 
inertia I0  = 1021 kg m2 (24229 lb-ft2). The operating speed of the machine (fm) is 30Hz, the rotating mass mr = 500 
kg (1102 lb), and the mass eccentricity er = 1.727E-4 m (5.67E-4 ft); which results in a frequency (f) dependent 
unbalanced load  𝐹! 𝑡 = (𝑓/𝑓!)𝐹!𝑒!"#  and moment  𝑀! 𝑡 = (𝑓/𝑓!)𝑀!𝑒!"#, where F0 = 3.07kN (0.69 
kip) and M0 = 0.706 kNm (0.52 kip-ft). The generic foundation shown in Figure 12 (Ref. [1]) is used to illustrate the 
degrees of freedom and forces considered while deriving the equation of motion. 
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Figure 12—Analysis of the dynamic equilibrium of a horizontally vibrating foundation block per Ref. [1]. 

A detailed derivation of the equation of motion for the foundation depicted in Figure 12 can be found 
elsewhere, e.g. Ref. [1]. In summary, the dynamic equilibrium equation of the block foundation is: 

)()()( tFtumtP yyy =+ !!  (13) 

)()()()( 0 tMtIztPtT xxxcyx =+⋅− θ!! 	   (14) 

The soil resistance, acting at the CR, is provided by Py(t) = Kz(uy(t) - zcθx(t)) + Kyrxθx(t)  and Tx(t) = 
Krxθx(t)  + Kyrx(uy(t) - zcθx(t)); where Ky, Krx, Kyrx are respectively the horizontal, rocking and coupled dynamic 
impedances of the subject foundation. Therefore, the equation of motion can be rewritten as follows: 

( ) yyyrxxcyy Fmuzu =−Κ+−Κ 2ωθθ  (15) 

( ) ( )[ ] xxxcxyrxxcyyxcyyrxxrx MIzzuzu =−⋅Κ+−Κ−−Κ+Κ θωθθθθ 0
2 	   (16) 

Given that the dynamic impedances are complex valued functions of the vibration frequency, above 
equations can be solved for harmonic loading using complex algebra procedures or standard computer codes for 
mathematical computations. Figure 13 shows the response of the machine foundation for different vibration 
frequencies.  

 

 
Figure 13—Coast up and coast down response of the rigid block foundation.  
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5. CONCLUSIONS 
The dynamic impedance of a soil supported foundation is highly frequency dependent. This dependency 

must be accounted for during the design of soil supported machine foundations. FE procedures are proposed in order 
to predict the dynamic behavior of soil supported foundations. Conclusions derived from the use of FE procedures 
are as follows: 

• Axisymmetric FE models are appropriate to calculate the dynamic impedance of surface, and embedded 
foundations.  

• Gradual damping elements combined with simple boundary elements can be used to properly model the 
unbounded media in the frequency and time domains. They properly capture the attenuation of stress waves 
propagating towards infinite. 

• The combined use of gradual mesh transitions, gradual damping finite elements and simple boundaries 
greatly decreases the number of elements required in a FE model, resulting in reduced computational cost 
without noticeable degradation of the numerical solution. 

• The concept of added mass can be used to model negative dynamic stiffness coefficients. 
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